Schrödinger operators periodic in octants

نویسندگان

چکیده

We consider Schrödinger operators with periodic potentials in the positive quadrant on plane Dirichlet boundary conditions. show that for any integer N and interval I there exists a potential such operator has eigenvalues counted multiplicity this is no other spectrum interval. Furthermore, to right left of it essential spectrum. Moreover, we prove similar results product an orthant Euclidean space. The proof based inverse spectral theory Hill real line.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Schrödinger Operators with Local Defects and Spectral Pollution

This article deals with the numerical calculation of eigenvalues of perturbed periodic Schrödinger operators located in spectral gaps. Such operators are encountered in the modeling of the electronic structure of crystals with local defects, and of photonic crystals. The usual finite element Galerkin approximation is known to give rise to spectral pollution. In this article, we give a precise d...

متن کامل

Convergence of Schrödinger Operators

For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...

متن کامل

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

Submanifold Differential Operators in D-Module Theory I: Schrödinger Operators

For this quarter of century, differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as quantum mechanical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, the Dirac operators in the submanifold have been investigated in such a scheme , which are identified wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2021

ISSN: ['0377-9017', '1573-0530']

DOI: https://doi.org/10.1007/s11005-021-01402-4